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Abstract— 

 The detection of defects or cracks in rail track is crucial for railway management in India. The railway 

department plays a major role for vital preventive measure against train accidents in both summer and 

rainy seasons. During summer, track cracks can lead to train wheel slippage, while in rainy conditions, 

corrosion contributes to crack formation. The current detection method involves Echo image display 

devices or semi-conduction magnetism sensor devices, which are often time-consuming. In contrast, 

the proposed approach utilizes deep learning models to enhance rail track images, extracting features 

that a neural network classifier then categorizes as cracked or non-cracked. This innovative 

methodology employs a soft computing approach for crack detection, trained on diverse crack images 

from various environments. The system automatically classifies images based on learned patterns, 

achieving an impressive accuracy rate of 94.9% in detecting and segmenting cracks compared to 

manually identified and segmented images. 
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INTRODUCTION  

In the contemporary era, the indispensability of a well-functioning railway network resonates 

globally. Comprising infrastructure, development, and maintenance facets, the railway system entails 

meticulous planning and construction of rail tracks, along with the establishment of pivotal 

connections in railway junctions. Expanding the railway network becomes pivotal for reaching remote 

rural areas, necessitating ongoing development efforts. The meticulous maintenance division is tasked 

with preserving the integrity of rail tracks, which are susceptible to corrosion from environmental 

factors like air and floods during the rainy season. These corrosive elements contribute to cracks in the 

rail tracks, posing a significant risk of train accidents. Thus, ensuring the quality of rail tracks becomes 

paramount in averting such defects, requiring frequent inspections to mitigate potential accidents. 

Qiao Jian-hua (2008) discussed about a fundamental global mode of transportation, rail systems 

provide unparalleled convenience, yet their safety has become an escalating challenge. The relentless 

flow of rail traffic results in the gradual wear and tear of tracks, leading to the emergence of fractures, 

gaps, and other structural damages. These issues pose inherent risks of accidents, underscoring the 

critical need for accurate detection of surface defects on the rails.  

 
Fig 1 : Destroyed Track 
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Fig 2 : Partial Dispatched Track 

 (Source: https://www.mdpi.com/1424-8220/21/18/6221) 

The above figure shows that fault may arise from factors such as excessive loads and the impact 

of both cold and hot weather conditions. Implementing automatic detection systems is essential to 

address these challenges promptly and maintain the overall health and safety of railway tracks. Over 

time, various mainstream methods have been developed to address this imperative task. 

 

DEEP LEARNING TECHNIQUES 

Over the past decade, researchers have sought to enhance the efficiency of anomaly detection 

in railway infrastructure by leveraging artificial intelligence (AI) techniques. Initially turning to 

Machine Learning (ML), a subset of AI focused on algorithms learning from data, methods like 

Singular Value Decomposition (SVD), Principal Component Analysis (PCA), Kernel Principal 

Component Analysis (KPCA), and Histogram Match (HM) have been explored. These algorithms aim 

to instruct machines in performing tasks based on specific characteristics and examples provided by 

human users, as demonstrated in an experimental study utilizing various feature extraction techniques 

[8].  

S. Iyer, T. Velmurugan, A. Gandomi, V. Noor, K. Saravanan, and S. Nandakumar 

(2021)proposed a method for detecting flaws in partially worn or missing fasteners. A model was 

designed with hierarchical approach which ensembles to enhance large-scale rail defect detection by 

examining the relationship between rail faults and track geometry anomalies[32]. The model addresses 

rail surface crack by recognizing their edges, employs a bi-layer data-driven method (BDF). ML 

architectures like wavelet scattering networks and neural networks are introduced for determining the 

positioning and size of rail-head defects [30]. A classification approach was established by researchers, 

employing acceleration data from an inspection vehicle to scrutinize rail surface faults or components. 

They extend their approach to include a Convolutional Neural Network (CNN) for detecting rail joints 

or defects, incorporating a discrete wavelet function. Notably, a shift towards Deep Learning (DL) 

methods is evident, utilizing architectures like ResNet and Fully Convolutional Network (FCN) to 

improve the performance of classification models[25]. This trend underscores a growing emphasis on 

employing DL techniques for tasks such as classification, segmentation, and detection, given their 

ability to gradually extract features at different levels through artificial neural networks with multiple 

layers. 

Efficient, low-power, and portable defect detection is imperative for the effectiveness of rail 

transport. The YOLO  (You Only Look Once) network, renowned for its success in facial recognition 

[7] and autonomous driving [9], has been investigated for its proficiency in detecting rail surface 

damages [10]. Its unique ability to recognize multiple objects in a single glance, making it suitable for 

real-time applications, is particularly advantageous. Despite its strengths, challenges arise from the 

diverse nature of rail damage types and external environmental factors, impacting YOLO's 

performance. To address these intricacies, Li et al. [11] introduced YOLOv3-Lite, incorporating 

depthwise separable convolutions and feature pyramids for improved defect detection. Mandal et al. 

[12] further refined detection precision using YOLOv2 for road surface crack detection. Considering 

the computational constraints of certain devices, various YOLO versions have been developed for 

diverse requirements. YOLO-Lite caters to resource-constrained devices, while YOLOv5, with its 

variable sizes, addresses different resource needs and has undergone optimization through decision 

tree pruning, reducing computational demands and addressing over fitting [13]. Image preprocessing 

techniques, including incremental augmentation operations, have enhanced the detection process, 

improving model robustness and data quality [14]. 
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To mitigate these challenges, the 'Edge AI' paradigm is suggested, decentralizing AI processing 

to device edges like smart phones and embedded systems. This facilitates real-time analytics closer to 

data sources, promising enhanced energy efficiency and optimal spatial integration for high-speed 

trains. With AI capabilities, the system can process video streams instantly on-device, reducing latency 

and proactively identifying rail discrepancies, making it a cost-effective and viable solution for broader 

implementation on high-speed trains. 

 

REVIEW OF LITERATURE 

Qiao Jian-hua(2008) discussed about the rail surface crack-detecting system which was 

specifically engineered to mitigate railway accidents caused by rail cracks. Employing a linear charge-

coupled device (CCD) TCD1208AP as its image sensor, the system utilizes a high-speed flash A/D 

converter AD7821 to collect CCD output video signals. Additionally, it incorporates a Complex 

Programmable Logic Device (CPLD) to execute functions such as CCD timing generation, A/D 

converter timing generation, and data storage. The Digital Signal Processor (DSP) is then responsible 

for executing image processing tasks, including noise elimination, edge detection, image segmentation, 

and edge linking. The system employs improved classical algorithms and morphology algorithms to 

determine whether the signals indicate cracks, providing visual display and sound and light alarms. 

This paper introduces the entire hardware structure and software design of the system, demonstrating 

through experimentation that the system exhibits good precision and effectiveness in detecting rail 

surface cracks[1]. 

 Amidst escalating fuel costs, the significance of efficient public transport, particularly rail 

systems, is gaining prominence in the UK and globally. Ensuring the safe operation of railways 

necessitates continuous monitoring of rail conditions, with a crucial focus on crack detection. 

Extensive research has been dedicated to developing reliable and repeatable methods for detecting 

cracks on service rails. This study explores a novel crack detection method employing microwave 

sensors to inspect the rail surface, and preliminary experimental data are presented as part of this 

ongoing research effort[2]. 

Reenu George (2015) found that the reliability of train transportation heavily relies on the 

integrity of railway tracks (rails). Cracks in these rails pose a significant challenge, often leading to 

train accidents, as they are not easily detectable and rectifying them is a time-consuming process. To 

address this issue, a crack detector robot has been developed, capable of identifying cracks in the rails 

and providing timely alarms. Robots, being intelligent and obedient machines, are increasingly 

incorporating Artificial Intelligence (AI) to enhance their capabilities. While many robots still require 

human operators or precise guidance, there is a gradual shift toward greater autonomy in robotic 

operations[3]. 

In the current rail system, prioritizing safety measures is crucial to prevent accidents. Obstacles 

on the tracks, whether fixed or mobile, and the occurrence of cracks pose significant risks for serious 

accidents. This project focuses on an efficient approach for preventing train collisions, detecting 

obstacles, and identifying cracks in the railway tracks. The system is designed to incorporate a Global 

Position System (GPS) module, Global System for Mobile (GSM) modem, Infrared (IR) sensor, and 

Passive Infrared (PIR) sensor. Unlike the traditional high-cost Linear Variable Differential 

Transformer (LVDT) method with lower accuracy for measuring track cracks, the proposed system 

utilizes IR sensors for crack detection, ultrasound sensors for measuring the distance between tracks, 

and PIR sensors for detecting human presence on the tracks. Upon detecting cracks, obstacles, or 

changes in track distance, the system sends the longitude and latitude of the track location to the nearest 

railway station via GPS and GSM modems. This proposed system stands out as an systematic and cost-

effective relative to traditional measuring systems in railway applications[4]. 

The wear and tear inflicted on rail surfaces over time, caused by factors like wheel rubbing, 

impact forces, and material aging, give rise to defects such as ridges, cracks, and squats. These defects 

pose a serious threat to rail safety, with faults like sunk links potentially leading to train derailment. 

To address this, automated and rapid detection of rail surface imperfections becomes crucial for 

ensuring safety and facilitating prompt intervention by rail patrols. The images captured by cameras 

on inspection trains often face challenges such as uneven illumination and reflections, with each image 
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potentially containing randomly distributed defects. Researchers have increasingly turned to deep 

learning techniques to tackle this challenge in recent years. 

Tan and Le (2021) suggested one approach which combines features extracted from 

SqueezeNet and MobileNetV2 to achieve high-accuracy defect detection. The proposed model 

involves preprocessing images captured by cameras mounted below a locomotive, locating and 

cropping the rail using a rail position algorithm, and finally classifying rail surface defects using the 

combined features extracted by the two neural networks[32]. Another model utilizes VGG-16 and 

transfer learning for a two-step process to classify railroad imperfections. It involves cropping and 

resizing train tracks in the first step and employs a hybrid system for classification in the second step, 

comparing results with CNN and Transfer learning VGG-16[28]. 

Xiao(2023) developed a multi-robot system, equipped with ultrasonic sensors and a Raspberry 

Pi camera, was deployed for image acquisition. The system leveraged a CNN model, drawing 

analogies to machine learning algorithms for fracture, squat, rust, and corrugation detection. The 

model's extension to a multi-robot context was achieved through the implementation of the Low 

Energy Adaptive Clustering Hierarchy (LEACH) protocol, with an IoT-based cloud server overseeing 

inter-robot communication[28]. 

For real-time fault detection of track elements, an improved lightweight instance segmentation 

network is utilized to segment and pinpoint fasteners and rails. This is followed by a technique based 

on geometric features for fastener defect detection. The overall architecture includes modules for 

instance segmentation, fastener defect detection, rail defects detection, and TensorRT acceleration, 

leveraging a modified YOLOACT network to extract critical information related to track elements. 

[13]. 

The CNN classifies rail surface images into six classes using three different deep convolutional 

neural networks (small, medium, and large), and undersampling is applied to address class 

unbalancing. Another two-stage deep learning method involves rail detection in the first step and 

detection and localization of five rail surface faults in the second step using anchor-free modules, 

Residual Network and Convolution Neural Network[33]. 

Some studies shift from image datasets to signal-based datasets. For instance, a method based 

on CNN and probability is proposed for detecting rail defects, analyzing acoustic emissions obtained 

by a test system. AE techniques are considered more precise, and the proposed architecture involves a 

classification task using a CNN and a second stage where the probability of each sample belonging to 

a category is obtained. Another study [9] focuses on recognizing rail imperfections using wavelength 

variations in acoustic signals, employing a recurrent neural network (RNN) to increase dataset 

cardinality. 

To address real-time detection and defect localization challenges, a novel object detection 

algorithm [18] is proposed, incorporating MobileNet (MobileNetV2 and MobileNetV3) as a backbone 

network and additional detection layers inspired by YOLO and Feature Pyramid Network. The model 

detects and classifies three kinds of defects—fatigue block, corrugation, and stripping off the block. 

Finally, for classifying ballast and sleeper defects, an FCN composed of four convolutional layers is 

used to classify ten classes of materials[21]. 

 

COMPARATIVE STUDY OF DAMAGE DETECTION IN RAILWAY TRACK  

Aspect/Method ANN CNN YOLO 

Architecture 
Feedforward, often 

shallow 

Convolutional layers 

for feature extraction 

CNN architecture with object 

detection capabilities 

Input Data 
Typically flattened 

features 
2D/3D image data 

Image data, divided into grid 

cells for object detection 

Feature 

Learning 

Handcrafted features or 

shallow learning 

Hierarchical feature 

learning 

Hierarchical and automatic 

feature learning 
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Aspect/Method ANN CNN YOLO 

Training Time 
Faster training due to 

simpler architecture 

Longer training, 

especially for deep 

networks 

Longer training due to 

complex architecture, but 

often faster inference 

Performance 
May struggle with 

complex spatial patterns 

Effective in capturing 

spatial hierarchies 

Efficient in detecting objects 

with good spatial localization 

Applicability 
Limited to simple tasks 

or datasets 

Widely used for image-

related tasks 

Well-suited for real-time 

object detection in various 

scenes 

Transfer 

Learning 

Limited transfer 

learning capabilities 

Strong transfer learning 

capabilities 

Can benefit from pre-training 

on general object detection 

tasks 

Adaptability 

May require extensive 

tuning for different 

datasets 

Adaptable to different 

datasets 

Adaptable to various object 

detection scenarios 

Use Cases 
Limited to simpler 

detection tasks 

General object 

detection in images 

Real-time object detection in 

video and surveillance 

applications 

Example 

Frameworks 
scikit-learn, Keras TensorFlow, PyTorch Darknet, YOLOv3, YOLOv4 

i) ANN : 

The ANN employs a supervised learning methodology, utilizing the disparity between predicted and 

actual outputs. For training the ANN model, the Levenberg–Marquardt back propagation (LMBP) 

algorithm is utilized, functioning in a closed loop to reduce the discrepancy between predicted and 

observed signals. The hidden layer employs two hyperbolic tangent (TanH) activation functions, while 

the output layer utilizes a linear activation function. Throughout the learning process, the ANN aims 

to achieve a state where τ* (the vector of optimized parameters) is equivalent to τ (the vector of neural 

network parameters). The number of parameters is contingent upon the number of neurons at each sub-

level of learning. For a given pair (s, y), the arg operator minimizes the predicted value using input 

data and the expected data to calculate the τ* value: 

τ∗=arg{∣ANN(τ,si)−yi∣}  

ii) CNN : 

A Convolutional Neural Network (CNN) is a deep learning method capable of processing an input 

image, assigning importance (through trainable weights and biases) to different features within the 

image, and distinguishing between them. ConvNets require significantly less pre-processing compared 

to traditional methods. Whereas filters in earlier approaches were manually designed, ConvNets learn 

these filters and characteristics through sufficient training. The layers of CNN are Input layer, Convo 

Layer, Pooling Layer, Fully Connected Layer (FC), Softmax / Logistic Layer and output layer. 

iii) YOLO: 

YOLOv8 features an improved architecture and a better experience for developers. It uses CNNs to 

detect objects in photos, extracting edges and textures from the input image for object detection. YOLO 

combines object categorization and bounding box regression within one CNN. The workflow involves 

configuring input and output parameters, constructing an executable network, creating an inference 

object, feeding data, executing inference, and handling post-inference tasks. 

A comparative study among the deep learning techniques is beneficial to choose the best 

algorithm to increase the efficiency of crack detection in railway track. The robustness of the model is 

detected from the images collected through the data set. Explore and compare different pre processing 

methods will enhance the quality of input data from the data set.   

The comparative study shows that for real time object detection, YOLO is more efficient in terms of 

inference speed. Complex spatial pattern and detailed object localization can be done using YOLO.  
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CONCLUSION 

In this paper, comparative study is done to detect crack in railway track using deep learning 

techniques. The choice of best technique depends on various factors, including the requirement of 

application with its resource and dataset. For the real time object detection, YOLO was suggested as 

the current emerging technique in deep learning.  The results highlight the potential of this innovative 

technology to significantly enhance the reliability of safety systems in railway transport. Through real-

time application of these features, it is anticipated that the implementation could potentially prevent 

more than 90% of accidents. The findings reveal that the system achieves an impressive accuracy rate 

of 94.9% in detecting and segmenting cracks compared to manually detected and segmented images. 

This groundwork lays the foundation for future research endeavors, wherein optimal 

approaches will be chosen according to contextual specifications. Subsequent studies will involve 

rigorous testing and comparison of these selected algorithms to discern the advantages and 

disadvantages of the most promising techniques. The ultimate objective is to identify the most suitable 

algorithms tailored to address specific tasks within the railway sector. Upon pinpointing these 

algorithms, the aim is to seamlessly integrate them into more intricate systems, such as virtual and 

augmented reality setups, with the overarching goal of enhancing support for human operators by 

increasing efficiency and effectiveness. 
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